알고리즘 트레이딩에서 자바를 사용하는 방법?
Java는 강력한 객체 지향 프로그래밍 언어입니다.
Android 앱을 개발했다면 Java에 익숙해야합니다.
알고리즘 거래에서 Java를 사용할 수 있습니까? Java를 알고리즘 거래에서 사용해야합니까?
Dukascopy와 Oanda는 알고리즘 거래에 Java API를 제공하는 두 가지 외환 브로커입니다.
자바 개발자로서 Java 기술을 연마하려면 알고리즘 트레이딩에서 사용해야합니다.
Java는 기계 학습 및 심화 학습을 할 수있는 강력한 언어입니다.
Dukascopy Java API는 Java 알고리즘 트레이딩 전략과 지표를 개발할 수있게 해줍니다.
Java는 강력한 회사 인 Oracle이 소유하고 있습니다.
앞으로 몇 년 안에 Java가 R 및 Python과 동등한 수준으로 데이터 과학 분야에서 보일 것이라고 생각합니다.
저는 올해 만 Java Data Science에 관한 15 권의 새로운 책을 보았 기 때문에 이것을 말하고 있습니다.
이미 강력한 기계 학습 및 심층 학습 라이브러리를 갖추고 있습니다.
AlgoTrader 알고리즘 트레이딩 소프트웨어.
AlgoTrader는 양적 헤지 펀드를위한 최초의 완전 통합 알고리즘 트레이딩 소프트웨어 솔루션입니다. 주식, 외환 및 파생 상품 시장에서 복잡한 양적 거래 전략을 자동화 할 수 있습니다. AlgoTrader는 일상적인 양적 헤지 펀드가 일상적인 업무 수행에 필요한 모든 것을 제공하며, Bitcoin 및 기타 Cryptocurrencies의 자동 거래를 허용하는 최초의 유일한 알고리즘 거래 소프트웨어 제품입니다.
AlgoTrader의 이점.
자동화 - 모든 양적 거래 전략을 완전히 자동화 할 수 있습니다.
고속 - 대량의 시장 데이터가 초고속으로 자동 처리, 분석 및 처리됩니다.
사용자 정의 가능 - 사용자 별 요구 사항에 맞게 오픈 소스 아키텍처를 사용자 정의 할 수 있습니다.
비용 효과 - 완전 자동화 된 거래 및 내장 기능은 비용을 절감합니다.
신뢰성 - 가장 견고한 아키텍처와 최첨단 기술을 토대로 제작되었습니다.
완전 지원 - 설치 및 사용자 정의를위한 포괄적 인 지침을 제공합니다. 현장 및 원격 교육 및 컨설팅이 가능합니다.
AlgoTrader 기능.
AlgoTrader 작동 원리.
규칙 기반 거래 전략은 완전히 자동화 될 수 있습니다.
전자 시장 데이터가 도착합니다. 데이터는 AlgoTrader 내부에서 실행되는 거래 전략으로 전달됩니다. 거래 전략은 시장 데이터를 분석, 필터링 및 처리하고 거래 신호를 생성합니다. 거래 신호에 따라 액션이 실행됩니다 (예 : 주문 또는 위치 마감). 주문은 해당 시장에 전달됩니다.
AlgoTrader 서비스 & # 038; 훈련.
온 사이트 및 원격 상담 및 교육 : 기존 전략 자동화 및 마이그레이션 기존 전략 개선 및 최적화 새로운 전략 프로토 타이핑 및 백 테스팅 맞춤형 기능 개발 포괄적 인 설명서 및 사용자 가이드.
최근 뉴스.
Swisscom Startup Challenge 8 월 17-2017 수상자 중 AlgoTrader.
강력한 기능을 갖춘 AlgoTrader 4.0 소개.
AlgoTrader는 스위스 국립 Fintech 팀 2017 년 6 월 12-2017 일의 일부입니다.
증언.
Vontobel은 AlperTrader의 개방적이고 확장 가능한 아키텍처는 물론 Esper 및 Spring과 같이 일반적으로 사용되는 표준 오픈 소스 구성 요소의 사용을 높이 평가합니다.
Benjamin Huber, Algo Trading & Head 책임자 Smart Order Routing, 은행 Vontobel AG, 취리히.
우리는 AlgoTrader의 전략 개발 및 기술적 유연성 측면에서 매우 인상적입니다. AlgoTrader는 여러 VIX Future 및 Option 기반 전략을 동시에 거래 할 수있게 해주는 핵심 기술입니다.
Raimond Schuster, 취리히 ISP Securities AG 집행위원회 위원.
판권 소유.
소셜 링크.
하단 주소.
스위스 전화 : +41 44 291 14 85 :
1. aws. amazon로 이동하여 & # 8220; 콘솔에 로그인 & # 8221;을 클릭하십시오. (아래 스크린 샷 참조)
2. 아직 Amazon AWS 계정이없는 경우 "Create AWS Account"를 클릭하여 등록 절차를 수행하십시오.
3. Amazon AWS Console에 로그인하면 사용자 이름 아래의 화면 오른쪽 상단에있는 메뉴에서 "내 계정"을 선택하십시오.
4. 다음 화면에서 "계정 설정"아래에 12 자리 Amazon ID가 표시됩니다.
귀하와 귀하가 소프트웨어 사용에 대한 별도의 서면 라이센스 계약을 체결하지 않은 한, 최종 사용자 사용권 계약 (& # 8220; 계약서 # 8221;)은 귀하가 소프트웨어를 사용하는 것을 관할합니다.
라이센서는 귀하가 본 계약서에 포함 된 모든 조건을 수락한다는 조건하에 만 소프트웨어의 사용을 기꺼이 허가합니다. 본 계약에 서명하거나 소프트웨어를 다운로드, 설치 또는 사용함으로써 귀하는 본 계약을 이해하고 해당 조항을 모두 수락 함을 나타냅니다. 귀하가 본 계약서의 모든 조건을 수락하지 않으면, 라이센서는 귀하에게 소프트웨어의 사용권을 허여하지 않으며 소프트웨어를 다운로드, 설치 또는 사용할 수 없습니다.
1. 라이센스 부여.
에이. 평가 사용 및 개발 사용 라이센스. 라이센스 계약자는 본 계약의 조건을 준수 함을 조건으로, 본 계약 기간 동안 소프트웨어를 내부적으로 사용하기 위해 재 라이센스 할 권리가없는 비 독점적이고 양도 불가능한 개인 라이센스를 귀하에게 부여합니다 평가 사용 및 개발 사용. 라이센서가 제공 한 제 3 자 소프트웨어 제품 또는 모듈 (있는 경우)은 소프트웨어와 함께 사용할 수 있으며 제 3 자에 의해 제공된 이용 약관을 수락 할 수 있습니다. 라이센스가 종료되면 소프트웨어 사용을 중지하고 모든 인스턴스를 제거해야합니다. 여기에 명시 적으로 부여되지 않은 모든 권리는 사용 허가자가 보유합니다. 개발자는 소프트웨어 또는 그 파생물 (개발자의 내부 사업 목적 포함)의 상업적 사용을해서는 안됩니다. 직접 또는 간접 고객에게 소프트웨어 또는 개발자 응용 프로그램을 복사 및 재배포하는 행위는 금지됩니다.
비. 생산 사용 라이센스. 해당 라이센스 요금 지불을 포함하여 본 계약의 조건을 준수하는 것을 조건으로, 라이센스 부여자는 본 계약 기간 동안 라이센스를 재 라이센스 할 수있는 비 독점적이고 양도가 불가능한 라이센스를 귀하에게 부여합니다. : (a) 귀하의 내부 사업 목적으로 만 소프트웨어를 사용하고 복제하십시오 (& # 8220; 제작 사용); (b) 백업용으로 만 소프트웨어의 합리적인 사본을 만들 수 있습니다. 이러한 라이센스는 라이센스 비용을 지불 한 특정 수의 CPU (CPU에 의해 라이센스가 부여 된 경우) 또는 Java Virtual Machine 인스턴스 (가상 시스템 별 라이센스 인 경우)로 제한됩니다. 더 많은 수의 CPU 또는 Java 가상 머신 인스턴스에서 소프트웨어를 사용하려면 추가 라이센스 비용을 지불해야합니다. 라이센서가 제공 한 제 3 자 소프트웨어 제품 또는 모듈 (있는 경우)은 본 소프트웨어와 함께 사용할 수 있습니다.
기음. 기타 권리 없음. 소프트웨어에 대한 귀하의 권리와 사용은 본 제 1 항에서 명시 적으로 부여 된 권리로 제한됩니다. 귀하는 소프트웨어를 다른 용도로 사용하지 않습니다. 본 절에서 명시 적으로 라이센스가 부여 된 경우를 제외하고, 라이센스 부여자는 암시 적, 금반언 적 또는 다른 방법으로 귀하에게 다른 권리 또는 라이센스를 부여하지 않습니다. 여기에 명시 적으로 부여되지 않은 모든 권리는 라이센스 제공자 또는 공급 업체가 보유합니다.
2. 제한.
제 1 항에서 명시 적으로 제공된 경우를 제외하고, 귀하는 다음을 수행하지 않습니다. (a) 소프트웨어의 수정, 번역, 분해, 파생물 작성 또는 소프트웨어 복사. (b) 어떤 형태로든 소프트웨어에 대한 권리를 다른 사람에게 임대, 대여, 양도, 배포 또는 부여하는 행위. (c) 제 3 자에 의한 소프트웨어의 제공, 공개, 공개 또는 사용을 허용하거나 사용을 허가하는 행위 (d) 소프트웨어 또는 그 일부에서 실행되는 벤치 마크 또는 성능 테스트 게시 또는 (e) 소프트웨어의 소유권 표시, 레이블 또는 표시를 제거하는 행위. 귀하는 독립 실행 형 또는 OEM (Original Equipment Manufacturer)을 기준으로 소프트웨어를 배포 할 수 없습니다.
3. 소유권.
양 당사자간에, 본 소프트웨어는 그 안에있는 모든 지적 재산권을 포함하여 라이센서의 독점적 인 자산으로 남을 것이다.
에이. 귀하가 섹션 1 (a)에 명시된 라이센스하에 소프트웨어를 사용하는 경우 본 계약은 평가 또는 개발 기간 동안 유효합니다.
비. 귀하가 제 1 조 (b) 항에 명시된 라이센스에 따라 소프트웨어를 사용하는 경우, 본 계약은 (a) 연간 가입 라이센스로 구입 한 경우 1 년 동안 또는 (b) 영구적으로 영구 라이선스. 연간 구독 라이센스는 한 달 전에 사전 통지없이 해지되지 않는 한 1 년까지 자동으로 갱신됩니다. 본 계약은 귀하가 본 계약 기간을 위반할 경우 통지없이 자동 종료됩니다. 계약이 해지되면 즉시 소프트웨어 사용을 중지하고 소유하거나 통제하는 소프트웨어의 모든 복사본을 폐기해야합니다.
5. 지원 서비스.
지원 서비스를 포함하여이 라이센스를 구입 한 경우 유지 보수 릴리스 (업데이트 및 업그레이드), 전화 지원 및 웹 기반 지원이 포함됩니다.
에이. 인가 권자는보고 된 오류를 해결하거나 우회하기 위해 고안된 업데이트를 제공하기 위해 상업적으로 합당한 노력을 기울일 것입니다. 이러한 오류가 유지 보수 릴리스에서 수정 된 경우, 라이센스 사용자는 해당 유지 보수 릴리스를 설치하고 구현해야합니다. 그렇지 않은 경우 업데이트는 영구적 인 업데이트가 포함 된 유지 보수 릴리스가 제공 될 때까지 사용되는 임시 수정, 절차 또는 루틴의 형태로 제공 될 수 있습니다.
비. 라이센스 계약 기간 동안 라이센스 제공자는 라이센스 제공자가 그러한 유지 보수 릴리스를 일반적으로 고객에게 제공 할 수있는 시점에서 라이센스 사용자에게 유지 보수 릴리스를 제공해야합니다. 제품 오퍼링이 업그레이드인지 또는 신제품인지 기능인지 여부에 대한 질문이 있으면 라이센서의 의견은 일반적으로 최종 사용자 고객을위한 새로운 제품이나 기능으로 제품 오퍼링을 취급한다는 조건하에 우선합니다 .
기음. 라이센서의 지원 서비스 제공 의무는 다음 조건에 달려있다. (a) 라이센시와 상담 한 후에 라이센스 사용자는 실수를 바로 잡기 위해 합리적인 노력을 기울인다. (b) 라이센스 사용자는 라이센스 부여 자의 사이트 또는 라이센스 사용자 사이트로의 원격 액세스를 통해 오류를 정정 할 수있는 충분한 정보와 자원은 물론 인력, 하드웨어 및 기타 추가 항목에 대한 액세스 권한을 라이센스 제공자에게 제공합니다 오류 발견과 관련된 소프트웨어; (c) 라이센스 사용자는 모든 유지 보수 릴리스를 즉시 설치합니다. (d) 라이센스 사용자는 제품을 작동시키는 데 필요한 모든 장비, 통신 인터페이스 및 기타 하드웨어를 조달, 설치 및 유지 보수합니다.
디. 라이센서는 다음과 같은 상황에서 지원 서비스를 제공 할 의무가 없다. (a) 제품이 변경, 수정 또는 손상된 경우 (라이센서의 직접 감독하에있는 경우는 제외). (b) 오류는 라이센스 사용자의 합당한 통제를 벗어난 과실, 하드웨어 오작동 또는 기타 원인으로 인해 발생합니다. (c) 오류는 라이센스 제공자를 통해 라이센스가 부여되지 않은 제 3 자 소프트웨어로 인해 발생합니다. (d) 라이센스 사용자는 유지 보수 릴리스를 설치 및 구현하지 않아 제품이 라이센스 부여자가 지원하는 버전입니다. 또는 (e) 라이센스 사용자는 만기일 때 라이센스 비용 또는 지원 서비스 비용을 지불하지 않았습니다. 또한 라이센스 제공자는 제품을 기반으로 고객 자신이 작성한 소프트웨어 코드에 대해 지원 서비스를 제공 할 의무가 없습니다.
이자형. 갑은 재량에 따라 제품의 지속적인 지원이 경제적으로 실용적이지 않다고 결정한 경우 갑옷 판매자 서비스를 중단 할 수있는 권리를 보유합니다. 인가 권자는 그러한 지원 서비스 중단을 서면으로 적어도 3 개월 전에 서면으로 통지하고 영향을받는 제품에 대해 선급금을 지불 한 미 지불 지원 서비스 수수료를 환불합니다. 라이센스 취득자는 제품이 지원되는 제 3 자 플랫폼 (소프트웨어, JVM, 운영 체제 또는 하드웨어를 포함하되 이에 국한되지 않음)의 모든 버전을 지원하거나 유지할 의무가 없습니다. 제품 및 기본 타사 플랫폼 및 (ii) 최초로 대체 된 후 6 개월 동안 제품 및 운영 체제의 직전 버전 두 개. 갑은 일정 기간이 만기가 된 후 30 일 이내에 갑이 계약에 따라 갑에게 지불 할 금액을 지불하지 않는 경우 지원 서비스의 수행을 중지 할 권리를 보유합니다.
6. 보증.
에이. 인가자는 소프트웨어를 설치 한 날로부터 90 일 동안 소프트웨어가 해당 문서에 명시된 기능 사양에 따라 중요한 모든 측면에서 수행 될 수 있음을 보증합니다. 그러한 보증을 위반 한 경우, 공급 권자는 선택에 따라 소프트웨어를 수정하거나 해당 소프트웨어를 무료로 교체해야합니다. 전술 한 내용은 귀하의 유일하고 독점적 인 구제책이며 라이센서의 이러한 보증 위반에 대한 단독 책임입니다. 위에 명시된 보증은 귀하의 이익을 위해서만 만들어집니다. 보증은 (a) 소프트웨어가 항상 설치 지침에 따라 올바르게 설치되고 사용 된 경우에만 적용됩니다. (c) 최신 업데이트가 소프트웨어에 적용되었습니다. (c) 라이센스 부여 자나인가 자의인가 된 대리인이 아닌 사람이 소프트웨어를 수정, 변경 또는 추가하지 않은 경우.
7. 면책 조항.
제 6 조 (a) 항에 의거하여 제공된 경우를 제외하고, 라이센스 제공자는 상품성, 특정 목적에 대한 적합성 및 비 침해에 대한 묵시적인 보증을 포함하여 명시 적이거나 묵시적인 모든 보증을 명시 적으로 부인하며, 상품성 및 특정 목적에의 적합성에 대한 묵시적 보증 무역. 구두 또는 서면 상 허가받지 않은 조언이나 정보는이 계약서에 명시 적으로 기술 된 보증을 제공하지 않습니다.
라이센스 부여자는 소프트웨어 제품이 귀하의 요구 사항을 충족 시키거나 귀하의 특정 사용 조건 하에서 작동한다는 보증을하지 않습니다. 인가자는 소프트웨어 제품의 작동이 안전하고 오류가 없으며 중단이 없음을 보증하지 않습니다.
소프트웨어 제품이 보안 및 중단없는 요구 사항을 충족하는지 여부를 결정해야합니다. 귀하는 귀하의 요구 사항을 충족시키기 위해 소프트웨어 제품의 고장으로 인해 초래 된 모든 손실에 대한 전적인 책임과 모든 책임을집니다. 라이센서는 컴퓨터 또는 정보 저장 장치의 데이터 손실에 대해 어떠한 경우에도 책임을지지 않습니다.
8. 책임의 제한.
책임의 모든 원인과 책임의 모든 이론에 근거하여 귀하에 대한 라이센스 제공자의 총 책임은 귀하가 소프트웨어 라이센스 제공자에게 지불 한 라이센스 비용을 한도로 초과하지 않을 것입니다. 어떠한 경우에도 라이센서는 특수한, 우발적 인, 우발적 인, 우발적 인, 징벌 적 또는 필연적 인 손해 (사용, 데이터, 사업 또는 이익의 손실 포함) 또는이 제품과 관련하여 발생하거나 이와 관련하여 발생하는 대체 제품의 비용을 책임지지 않습니다 계약 또는 사용 또는 성능에 대한 책임을지지 않으며, 그러한 책임은 계약, 보증, 불법 행위 (태만 포함), 엄격한 책임 또는 기타 방법에 근거하거나 그러한 손실의 가능성에 대해 면허가 부여되었는지 여부에 관계없이 손해. 상기 제한은 본 계약서에 명시된 제한된 구제책이 본질적인 목적을 달성하지 못한 것으로 판명 된 경우에도 적용되고 적용됩니다. 해당 관할 지역에서 라이센스 보유자가 묵시적 보증을 부인할 수있는 범위 내에서이 부인은 허용되는 최대 범위 내에서 유효해야합니다.
본 계약의 조항이 유효하지 않거나 집행이 불가능할 경우 본 계약의 나머지 조항이 완전히 효력을 유지합니다. 적용 가능한 법률에 의해 명시 적 또는 묵시적 제한이 허용되지 않는 한, 이러한 명시 적 또는 묵시적 제한은 해당 적용 법률에서 허용하는 최대한의 범위까지 계속 유효합니다.
본 계약은 본 계약 내용과 관련하여 당사자 간의 완전하고 독점적 인 계약으로, 본 계약 내용과 관련하여 이전 계약, 의사 소통 및 이해 (구두 및 구두)를 대체합니다. 본 계약의 당사자는 독립적 인 계약자이며 다른 당사자를 구속하거나 다른 당사자를 대신하여 의무를 부담 할 권한도 없습니다. 일방 당사자가 본 계약에 따른 권리를 행사하거나 집행하지 않는 한 그러한 권리의 포기로 간주되지 않습니다. 구매 주문서 나 기타 주문서에 포함 된 조건은 본 계약의 조건과 일치하지 않거나 추가적으로 라이센스 제공자에 의해 거절되며 무효로 간주되며 아무런 효력이 없습니다.
본 계약은 법률 원칙의 충돌과 관계없이 스위스 법에 따라 해석되고 해석됩니다. 양 당사자는 본 계약과 관련하여 발생하는 분쟁의 해결을 위해 스위스 취리히에 위치한 법원의 배타적 인 관할권 및 재판 지에 동의합니다.
10. 정의.
& # 8220; 평가 사용 & # 8221; 은 귀하의 프로덕션 용도로 의도 된 새로운 응용 프로그램에 대한 평가 및 평가판 용도로만 소프트웨어를 사용함을 의미합니다.
& # 8220; 프로덕션 사용 & # 8221; 란 내부 업무 용도로만 소프트웨어를 사용하는 것을 의미합니다. 생산 사용에는 ASP, VAR, OEM, 배포자 또는 대리점 계약의 일부로 소프트웨어를 공유하거나 배포하는 작업을 포함하여 재 라이센스, 재판매 또는 배포를 위해 소프트웨어를 복제 할 수있는 권리가 포함되지 않습니다.
& # 8220; 소프트웨어 & # 8221; 라 함은 라이센스 제공자의 소프트웨어 및 라이센스 자에 포함 된 모든 구성 요소, 문서 및 예를 의미합니다.
& # 8220; 오류 & # 8221; (a) 제품이 설명서에 명시된 사양을 준수하지 않아 제품 사용 불가 또는 사용 제한으로 이어지는 경우 및 / 또는 (b) 새로운 절차가 필요한 문제, 추가 정보 및 / 또는 제품 개선 요구 사항에 대해 설명합니다.
& # 8220; 유지 관리 릴리스 & # 8221; 는 5 항에 정의 된 표준 지원 서비스에 따라 라이센스 사용자가 사용할 수 있도록 업그레이드 및 제품 업데이트를 의미합니다.
& # 8220; 업데이트 & # 8221; 은 제품을 만들거나 추가 할 때 오류를 수정하는 소프트웨어 수정 또는 추가 또는 제품의 정상적인 작동에서 관찰 될 때 오류가 라이센스 사용자에게 미치는 실질적인 악영향을 제거하는 절차 또는 루틴을 의미합니다.
& # 8220; 업그레이드 & # 8221; 은 새로운 기능을 추가하거나 제품의 용량을 늘리기 위해 일반적으로 지원 서비스 기간 중 최종 사용자 고객에게 라이센스 제공자가 릴리스 한 제품의 개정판을 의미합니다. 업그레이드에는 신제품 출시 또는 별도의 요금이 부과 될 수있는 기능 추가가 포함되지 않습니다.
QuantStart.
빠르게 성장하는 소매점 퀀텀 트레이더 커뮤니티를 지원하는 Quantcademy 개인 회원 포털에 가입하십시오. 당신은 당신의 가장 중요한 퀀트 트레이딩 질문에 대답 할 준비가되어있는 지식이 풍부하고 마음이 맞는 퀀트 트레이더 그룹을 찾을 수 있습니다.
퀀트 트레이딩에 관한 나의 eBook을 확인해보십시오. 여기서 저는 파이썬 툴로 수익성 높은 체계적인 트레이딩 전략을 만드는 법을 가르쳐드립니다.
Python 및 R을 사용하여 시계열 분석, 기계 학습 및 베이지안 통계를 사용하는 고급 거래 전략에 관한 새로운 전자 책을 살펴보십시오.
2014 년 2 월 26 일 Michael Halls-Moore 작성
이 기사에서는 자동화 된 실행의 개념에 대해 설명합니다. 광범위하게 말하자면, 이것은 전자 거래 플랫폼을 통한 거래 전략이 이후의 인간 개입없이 거래 실행 신호를 생성하는 것을 허용하는 프로세스입니다. 현재까지 QuantStart에서 논의 된 대부분의 시스템은 자동화 된 실행 전략으로 구현되도록 설계되었습니다. 이 기사에서는 백 테스트 및 자동 실행 기능을 모두 제공하는 소프트웨어 패키지 및 프로그래밍 언어에 대해 설명합니다.
첫 번째 고려 사항은 전략을 백 테스팅하는 방법입니다. 내 개인적인 견해는 일류 프로그래밍 언어 내에서 백 테스트 환경을 맞춤 개발하면 유연성이 가장 높다는 것입니다. 반대로 공급 업체가 개발 한 통합 백 테스트 플랫폼은 백 테스트가 수행되는 방식에 대해 항상 가정해야합니다. 그럼에도 불구하고, 사용 가능한 프로그래밍 언어의 선택은 크고 다양하며 종종 압도적입니다. 어떤 언어가 적합한지를 개발하기 전에는 분명하지 않습니다.
체계적인 규칙으로 전략을 체계화 할 때 양적 거래자는 미래의 성과가 과거 성과를 반영 할 것이라는 확신을 가져야합니다. 이 가설을 테스트하기 위해 일반적으로 두 가지 형태의 백 테스팅 시스템이 있습니다. 광범위하게는 리서치 테스터 및 이벤트 기반 테스터로 분류됩니다. 우리는이 두 가지 패러다임에 대한 맞춤형 백 테스터와 벤더 제품을 비교하여 어떻게 비교하는지 살펴볼 것입니다.
연구 도구.
알고리즘 거래 전략을 식별 할 때 일반적으로 시장 상호 작용의 모든 측면을 완전히 simualte하는 것이 불필요합니다. 대신 잠재 전략 성능을 신속하게 결정할 수있는 근사값을 만들 수 있습니다. 이러한 리서치 툴은 종종 거래 비용, 채우기 가격, 제약 조건, 장소 의존성, 위험 관리 및 포지션 사이징에 대한 비현실적인 가정을 만듭니다. 이러한 단점에도 불구하고 이러한 전략의 성과는 여전히 효과적으로 평가할 수 있습니다. 연구를위한 일반적인 도구로는 MATLAB, R, Python 및 Excel이 있습니다.
이 소프트웨어 패키지에는 빠른 실행 속도와 쉬운 전략 구현을 가능하게하는 벡터화 기능이 함께 제공됩니다. MATLAB과 pandas는 벡터화 된 시스템의 예입니다. 이러한 리서치 툴을 통해 현실적인 시장 상호 작용 시뮬레이션을 완벽하게 "살피지"않고도 신속하고 반복적 인 방식으로 여러 전략, 조합 및 변형을 테스트 할 수 있습니다.
이러한 도구는 백 테스트 및 실행에 자주 사용되지만 이러한 연구 환경은 일반적으로 분 단위로 높은 주파수에서 일중 거래에 접근하는 전략에 적합하지 않습니다. 이러한 라이브러리는 실시간 시장 데이터 공급 업체에 효과적으로 연결되거나 강력한 방식으로 중개 API와 상호 작용할 수없는 경향이 있습니다.
이러한 실행상의 단점에도 불구하고 연구 환경은 전문 양적 무역 업계에서 많이 사용됩니다. 현실적인 백 테스팅 환경에서보다 엄격한 수표로 승격하기 전에 모든 전략 아이디어에 대한 "첫 번째 초안"을 제공합니다.
이벤트 중심 Backtesting.
일단 전략이 연구에서 적절하다고 판단되면 현실적으로 평가되어야합니다. 이러한 사실주의는 이전 게시물에서 설명한 문제의 대부분 (전부는 아닐지라도)을 설명하려고 시도합니다. 이상적인 상황은 실시간 실행뿐만 아니라 역사적인 백 테스트에도 동일한 거래 생성 코드를 사용할 수 있다는 것입니다. 이는 이벤트 기반 백 테스터를 통해 달성됩니다.
이벤트 중심 시스템은 소프트웨어 엔지니어링에서 널리 사용되며 일반적으로 윈도우 기반 운영 체제에서 그래픽 사용자 인터페이스 (GUI) 입력을 처리하는 데 사용됩니다. 또한 실시간 시장 주문 또는 무역 채우기의 개념을 이벤트로 캡슐화 할 수 있으므로 알고리즘 거래에 이상적입니다. 이러한 시스템은 종종 C ++, C # 및 Java와 같은 고성능 언어로 작성됩니다.
자동화 된 거래 전략이 실시간 시장 피드 및 브로커 (이 둘은 동일 할 수도 있음)에 연결되는 상황을 고려하십시오. 새로운 시장 정보가 시스템에 전송되어 이벤트가 새로운 거래 신호를 생성하고 실행 이벤트를 생성합니다. 이러한 시스템은 이벤트를 수신하고 적절하게 처리하기 위해 대기하는 연속 루프에서 실행됩니다.
역사적인 데이터 핸들러 및 중개 시뮬레이터와 같은 하위 구성 요소를 생성 할 수 있습니다. 이 하위 구성 요소는 실제 대응 물을 모방 할 수 있습니다. 따라서 실시간 실행과 매우 유사한 방식으로 백 테스팅 전략을 사용할 수 있습니다.
그러한 시스템의 단점은 간단한 연구 도구와 비교할 때 복잡한 설계에 있습니다. 따라서 "시장 출시 시간"은 더 길다. 그들은 버그에 취약하고 프로그래밍 및 소프트웨어 개발 방법론에 대한 지식이 필요합니다.
엔지니어링 측면에서 대기 시간은 시뮬레이션과 응답 사이의 시간 간격으로 정의됩니다. 양적 거래에서는 일반적으로 실행 신호 생성과 실행을 수행하는 브로커로부터 채우기 정보를 수신하는 사이의 왕복 시간 지연을 나타냅니다.
이러한 대기 시간은 저주파 인터 데이 전략에서 거의 문제가되지 않습니다. 대기 시간 동안 예상되는 가격 변동은 전략에 큰 영향을 미치지 않습니다. 대기 시간이 극도로 중요한 고주파수 전략에서도 마찬가지입니다. HFT의 궁극적 인 목표는 가능한 한 슬립을 줄이기 위해 대기 시간을 줄이는 것입니다.
대기 시간을 줄이는 것은 알고리즘 트레이딩 시스템과 주문이 실행되는 최종 거래소 간의 "거리"를 최소화하는 것입니다. 이는 시스템 간의 지리적 거리를 줄임으로써 네트워크 케이블 링을 따라 이동 시간을 단축시킬 수 있습니다. 네트워킹 하드웨어에서 수행되는 처리를 줄이거 나보다 정교한 인프라로 중개를 선택하는 것도 포함될 수 있습니다. 많은 중개 회사가 비즈니스 우승을 위해 대기 시간에 경쟁합니다.
대기 시간 감소는 두 서버 간의 네트워크 거리로 정의되는 "인터넷 거리"의 함수로서 기하 급수적으로 더 비쌉니다. 따라서 고 빈도 거래자의 경우 대기 시간 감소 지출과 미끄러짐 최소화로 인한 이득 사이에 절충안이 도달해야합니다. 이러한 문제는 아래의 Colocation 섹션에서 설명합니다.
언어 선택.
언어 선택을 유도하는 몇 가지 쟁점이 이미 설명되어 있습니다. 이제 개별 프로그래밍 언어의 장점과 단점을 고려해 보겠습니다. 나는 언어를 고성능 / 경질 개발과 저 성능 /보다 쉬운 개발로 크게 범주화했다. 이것들은 주관적인 용어이며 배경에 따라 일부는 동의하지 않습니다.
커스텀 백 테스팅 환경 프로그래밍의 가장 중요한 측면 중 하나는 프로그래머가 사용되는 툴에 익숙하다는 것입니다. 프로그래밍 언어 환경에 익숙하지 않은 사람들을 위해 다음은 알고리즘 거래 내에서 활용되는 경향을 명확히 할 것입니다.
C ++, C # 및 Java.
C ++, C # 및 Java는 모두 범용 객체 지향 프로그래밍 언어의 예입니다. 즉, 해당 통합 개발 환경 (IDE)없이 사용할 수 있고, 모든 플랫폼에서 작동하며, 상상할 수있는 거의 모든 작업을 수행 할 수있는 다양한 라이브러리가 있으며 올바르게 활용하면 빠른 실행 속도가 가능합니다.
궁극적 인 실행 속도가 원하는 경우 C ++ (또는 C)가 최상의 선택이 될 수 있습니다. 메모리를 관리하고 실행 속도를 최적화 할 수있는 유연성이 가장 뛰어납니다. 이러한 유연성은 가격으로 제공됩니다. C ++은 잘 배우는 것이 까다 롭고 종종 미묘한 버그로 이어질 수 있습니다. 개발 시간은 다른 언어보다 훨씬 오래 걸릴 수 있습니다. 이러한 단점에도 불구하고 그것은 금융 산업에 보급되어 있습니다.
C #과 Java는 부동 소수점 및 정수와 같은 원시 데이터 유형을 제외한 모든 구성 요소가 객체가되어야하기 때문에 비슷합니다. 자동 가비지 수집을 수행하여 C ++과 다릅니다. 가비지 수집은 성능 오버 헤드를 추가하지만 더 빠른 개발로 이어집니다. 이 언어들은 고유 한 GUI 기능, 수치 해석 라이브러리 및 빠른 실행 속도를 가지기 때문에 백 테스터를 개발할 때 좋은 선택입니다.
개인적으로, 저는 HFT 시스템과 같이 매우 빠른 실행 속도가 필요한 이벤트 기반 백 테스터를 만들기 위해 C ++를 사용합니다. 이것은 파이썬 이벤트 중심 시스템에 병목 현상이 발생했다는 느낌이 들었을 때만 해당합니다. 후자의 언어가 그러한 시스템에 대한 첫 번째 선택이 될 수 있기 때문입니다.
MATLAB, R 및 Python.
MATLAB은 수치 계산을위한 상용 IDE입니다. 그것은 학계, 공학 및 금융 분야에서 널리 받아 들여지고 있습니다. 그것은 과학 계산을위한 많은 숫자 라이브러리를 가지고 있습니다. 개발중인 알고리즘이 벡터화 또는 병렬화의 대상이된다고 가정 할 때 빠른 실행 속도를 자랑합니다. 이러한 장점에도 불구하고 비용이 많이 들기 때문에 소매 상인에게는 예산이 적게 든다. MATLAB은 인터랙티브 브로커 (Interactive Brokers)와 같은 중개업에 직접 실행하기 위해 때때로 사용됩니다.
R은 전용 통계 스크립팅 환경입니다. 무료 오픈 소스 크로스 플랫폼이며 매우 고급 분석을 수행 할 수있는 풍부한 통계 패키지를 포함합니다. R은 학문 통계 및 양적 헤지 펀드 산업에서 매우 널리 사용됩니다. R을 중개 회사에 연결할 수는 있지만 업무에 적합하지 않으며 더 많은 연구 도구로 간주되어야합니다. 또한 작업이 벡터화되지 않으면 실행 속도가 부족합니다.
MATLAB, R과 위에서 언급 한 범용 언어 사이에 있지만 Python을이 제목 아래에 그룹화했습니다. 그것은 무료 오픈 소스 및 크로스 플랫폼입니다. 이것은 컴파일 된 것과 반대되는 것으로 해석되어 C ++보다 기본적으로 느립니다. 그러나 과학적 계산부터 저수준 웹 서버 설계에 이르기까지 상상할 수있는 거의 모든 작업을 수행 할 수있는 라이브러리가 포함되어 있습니다. 특히 NumPy, SciPy, pandas, matplotlib 및 scikit-learn이 포함되어 있습니다. 벡터화 된 언어가 컴파일 된 언어 실행 속도와 비교할 수있는 견고한 수치 연구 환경을 제공합니다.
파이썬은 또한 브로커에 연결하기위한 라이브러리를 가지고 있습니다. 이를 통해보다 복잡한 다른 언어를 사용하지 않고도 이벤트 중심의 백 테스팅 및 라이브 실행 환경을 만들 수있는 "원 스톱 숍"을 제공합니다. 실행 속도는 몇 분 또는 그 이상의 시간 척도로 거래되는 일중 거래자에게 충분합니다. 파이썬은 C ++과 같은 하위 언어와 비교할 때 매우 익숙하고 배우기 쉽습니다. 이러한 이유로 우리는 QuantStart 기사에서 파이썬을 광범위하게 사용합니다.
통합 개발 환경.
IDE라는 용어는 알고리즘 거래 내에서 여러 의미를 지닙니다. 소프트웨어 개발자는이를 구문 강조, 파일 찾아보기, 디버깅 및 코드 실행 기능으로 프로그래밍 할 수있는 GUI를 의미합니다. 알고리즘 트레이더는 실시간 또는 실시간 데이터 다운로드, 차트 작성, 통계적 평가 및 실제 실행을 통해 완벽하게 통합 된 백 테스팅 / 거래 환경을 의미합니다. 우리의 목적을 위해이 용어는 범용 프로그래밍 언어로 간주되지 않는 GUI 기반의 백 테스팅 / 거래 환경을 의미합니다.
일부 퀀트 거래자는 Excel을 거래에 부적절하다고 생각할 수도 있지만 결과의 "온 전성 검사"에 매우 유용하다고 생각했습니다. 모든 데이터가 명백한 시각에서 직접 이용 가능하다는 사실은 매우 기본적인 신호 / 필터 전략을 구현하는 것을 수월하게 만듭니다. 대화 형 중개인 (Interactive Brokers)과 같은 중개인은 Excel에서 실시간 시장 데이터를 받고 거래 주문을 실행할 수 있도록하는 DDE 플러그인도 허용합니다.
사용의 용이성에도 불구하고 Excel은 합리적인 규모의 데이터 또는 수치 계산 수준에서 매우 느립니다. 다른 전략과 비교하여 개발할 때만 오류 검사에 사용합니다. 특히 전략이 사전 검색 편견의 대상인지 여부를 확인하는 것이 매우 편리합니다. 소프트웨어의 스프레드 시트 특성으로 인해 Excel에서 감지하는 것이 간단합니다.
프로그래밍 언어에 익숙하지 않고 인터내셔널 전략을 수행하는 경우 Excel이 좋은 선택 일 수 있습니다.
상업 / 소매 Backtesting Software.
소매 차트, "기술 분석"및 백 테스팅 소프트웨어 시장은 매우 경쟁력이 있습니다. 이러한 소프트웨어가 제공하는 기능으로는 가격의 실시간 차트 작성, 풍부한 기술 지표, 맞춤형 백 테스팅 언어 및 자동 실행 기능이 있습니다.
일부 공급 업체는 TradeStation과 같은 올인원 솔루션을 제공합니다. TradeStation은 여러 자산 클래스에 걸쳐 전자 주문을 제공하는 거래 소프트웨어 (TradeStation이라고도 함)를 생산하는 온라인 중개 회사입니다. 현재 자동화 된 실행을위한 직접 API를 인식하지 못했습니다. 대신 주문은 GUI 소프트웨어를 통해 이루어져야합니다. 이는 트레이딩 인터페이스가 가벼운 트레이더 (Trading Trader)를 보유하고 있지만, 자사의 독점적 인 실시간 시장 / 주문 실행 API와 FIX 인터페이스를 제공하는 인터렉티브 브로커 (Interactive Brokers)와는 대조적입니다.
또 다른 매우 인기있는 플랫폼은 'Expert Advisors'창설을 위해 외환 거래에 사용되는 MetaTrader입니다. 자동 거래에 사용할 수있는 독점적 언어로 작성된 사용자 정의 스크립트입니다. TradeStation이나 MetaTrader에 대한 많은 경험이 없었으므로 그만큼의 시간을 투자하지 않아도됩니다.
이러한 도구는 심층적 인 소프트웨어 개발에 익숙하지 않고 많은 세부 사항을 처리하기를 원한다면 유용합니다. 그러나 이러한 시스템을 사용하면 많은 유연성이 희생되며 종종 하나의 중개 회사에 묶여 있습니다.
오픈 소스 및 웹 기반 도구.
현재 널리 사용되는 두 가지 웹 기반 백 테스팅 시스템은 Quantopian과 QuantConnect입니다. 전자는 Python (및 ZipLine, 아래 참조)을 사용하는 반면 후자는 C #을 사용합니다. 두 가지 모두 풍부한 역사적인 데이터를 제공합니다. Quantopian은 현재 인터렉티브 브로커 (Interactive Brokers)를 통해 라이브 거래를 지원하고 QuantConnect는 실시간 거래를 위해 노력하고 있습니다.
Algo-Trader는 스위스 기반 기업으로 시스템에 오픈 소스 및 상업용 라이센스를 모두 제공합니다. 내가 제공 할 수있는 것에서부터 제공은 매우 성숙한 것으로 보이며 많은 기관 고객이 있습니다. 이 시스템은 전체 이력 테스트 및 복잡한 이벤트 처리를 허용하며 대화 형 중개인과 연결됩니다. Enterprise 버전은 훨씬 더 높은 성능 기능을 제공합니다.
Marketcetera는 이미 작성한 코드를 활용하기 위해 Python 및 R과 같은 다른 많은 언어와 연결할 수있는 백 테스팅 시스템을 제공합니다. 'Strategy Studio'는 백 테스팅 코드를 작성하고 최적화 된 실행 알고리즘을 작성하는 기능을 제공하며, 이후 역사적인 백 테스트에서 생 종이 거래로 전환합니다. 나는 전에 그들을 사용하지 않았다.
ZipLine은 위에서 언급 한 Quantopian 서비스를 지원하는 Python 라이브러리입니다. 그것은 완전히 이벤트 중심의 백 테스팅 환경이며 현재는 미미한 바 기준으로 미국 주식을 지원합니다. 나는 ZipLine을 광범위하게 사용하지는 않았지만 그것이 좋은 도구라고 생각하는 다른 사람들을 알고있다. 여전히 개선해야 할 부분이 많이 남아 있지만 팀은 지속적으로 프로젝트를 진행하고 있으며 매우 적극적으로 유지 관리하고 있습니다.
살펴보고 싶은 Github / Google Code 호스트 프로젝트도 있습니다. 나는 그들을 조사하는 데 많은 시간을 투자하지 않았다. 이러한 프로젝트에는 OpenQuant, TradeLink 및 PyAlgoTrade가 포함됩니다.
기관용 백 테스팅 소프트웨어.
Deltix 및 QuantHouse와 같은 기관 등급의 백 테스팅 시스템은 소매 알고리즘 거래자에 의해 종종 활용되지 않습니다. 소프트웨어 라이센스는 일반적으로 인프라 스트럭처를위한 예산 밖에 있습니다. 즉, 이러한 소프트웨어는 퀀트 펀드, 독점 거래소, 가족 사무실 등에서 널리 사용됩니다.
이러한 시스템의 이점은 분명합니다. 단일 장비 또는 포트폴리오에서 높은 빈도 수준까지 데이터 수집, 전략 개발, 과거 백 테스트 및 실시간 실행을위한 올인원 (all-in-one) 솔루션을 제공합니다. 이러한 플랫폼은 광범위한 테스트를 거쳤으며 "현장에서"많이 사용되었으므로 견고한 것으로 간주됩니다.
시스템은 이벤트 기반이며 백 테스팅 환경은 종종 실제 환경을 높은 수준의 정확도로 시뮬레이트 할 수 있습니다. 또한 시스템은 트랜잭션 비용을 최소화하기 위해 최적화 된 실행 알고리즘을 지원합니다. 자본 규모가 큰 거래자에게는 특히 유용합니다.
Deltix 나 QuantHouse에 대한 많은 경험이 없다는 것을 인정해야합니다. 즉, 예산만으로는 대부분의 소매 상인이 접근 할 수 없기 때문에 이러한 시스템에 머물지는 않을 것입니다.
코 로케이션.
알고리즘 거래를위한 소프트웨어 환경이 조사되었습니다. 이제 우리 전략을 실행할 하드웨어의 구현에주의를 돌릴 수 있습니다.
소매 상인은 시장 시간 동안 집에서 전략을 실행할 것입니다. 이것은 자신의 PC를 켜고, 중개업에 연결하고, 시장 소프트웨어를 업데이트 한 다음, 알고리즘이 하루 동안 자동으로 실행되도록합니다. 반대로, 관리 대상 자산이 많은 전문가 용 퀀트 펀드 (quantforce)는 고속 전략을 수행하기 위해 가능한 한 대기 시간을 줄이기 위해 전용 Exchange 기반 서버 인프라를 보유하게됩니다.
홈 데스크톱.
하드웨어 배치에 대한 가장 간단한 접근 방법은 광대역 (또는 유사한) 연결을 통해 중개 시스템에 연결된 가정용 데스크톱 컴퓨터로 알고리즘 전략을 수행하는 것입니다.
이 접근법은 시작하기 쉽지만 많은 결점이 있습니다. UPS로 백업하지 않는 한 데스크탑 컴퓨터는 정전이 발생할 수 있습니다. 또한 가정용 인터넷 연결은 ISP의 자비하에 있습니다. 전력 손실이나 인터넷 연결 실패는 거래에서 중요한 순간에 발생할 수 있으며 알고리즘 거래자는 닫을 수없는 열린 포지션을 남겨 둡니다. 이 문제는 또한 운영 체제의 필수 재시작 (실제로 이것은 전문적인 환경에서 나에게 일어났습니다!) 및 구성 요소 오류로 인해 발생하며 동일한 문제가 발생합니다.
위의 이유로 나는 알고리즘 거래에 대한 가정용 데스크톱 접근법을 추천하기를 주저합니다. 이 방법을 사용하기로 결정한 경우 백업 컴퓨터와 백업 인터넷 연결 (예 : 3G 동글)을 모두 사용하여 가동 중지 상황에서 위치를 종료 할 수 있어야합니다.
홈 데스크톱에서 다음 단계는 VPS (가상 사설 서버)를 사용하는 것입니다. VPS는 종종 "클라우드"서비스로 판매되는 원격 서버 시스템입니다. VPS는 실제로 훨씬 더 큰 서버의 파티션이기 때문에 해당 전용 서버보다 훨씬 저렴합니다. 이들은 개별 사용자가 사용할 수있는 가상의 고립 된 운영 체제 환경을 가지고 있습니다. CPU로드는 여러 VPS간에 공유되며 시스템 RAM의 일부는 VPS에 할당됩니다. 이것은 모두 가상화라고하는 프로세스를 통해 수행됩니다.
일반적인 VPS 제공 업체에는 Amazon EC2 및 Rackspace Cloud가 포함됩니다. 엔터프라이즈 급의 높은 RAM, 높은 CPU 서버를 통해 낮은 RAM 및 기본 CPU 사용량을 갖춘 보급형 시스템을 제공합니다. 알고리즘 소매 상인의 대다수의 경우 엔트리 레벨 시스템은 저주파수 일중 또는 일간 전략과 더 작은 과거 데이터 데이터베이스로 충분합니다.
VPS 기반 시스템의 이점으로는 24/7 가용성 (특정 실제 다운 타임 임에도 불구하고),보다 강력한 모니터링 기능, 파일 저장 또는 관리 데이터베이스 및 유연한 아키텍처와 같은 추가 서비스를위한 간편한 "플러그인"등이 있습니다. 하나의 단점은 지속적인 비용입니다. 시스템이 커짐에 따라 전용 하드웨어는 성능 단위당 더 저렴 해집니다. 이 가격 포인트는 거래소로부터 멀리 떨어져 있다는 가정입니다.
가정용 데스크톱 시스템에 비해 지연 시간은 항상 VPS 공급자를 선택하여 향상되지는 않습니다. 집 위치는 클라우드 제공 업체의 데이터 센터보다 특정 금융 거래소에 더 가깝습니다. 이는 거래소 또는 그 근처에 위치한 알고리즘 트레이딩을 위해 특별히 제작 된 VPS 서비스를 제공하는 회사를 선택함으로써 완화됩니다. 아마존이나 랙 스페이스 (Rackspace)와 같은 일반 VPS 제공 업체보다 비용이 많이 든다.
Exchange Colocation.
최상의 대기 시간 최소화를 얻으려면 Exchange 데이터 센터에서 전용 서버를 직접 배치해야합니다. 아주 잘 투자하지 않으면 거의 모든 소매 알고리즘 트레이더에게 엄청나게 비싼 옵션입니다. 그것은 전문적인 양적 펀드 또는 중개업의 영역입니다. 위에서 언급 한 것처럼 좀 더 현실적인 옵션은 교환기 근처에있는 제공 업체로부터 VPS 시스템을 구매하는 것입니다.
알 수 있듯이 백 테스팅, 자동화 된 실행 및 전략 호스팅을위한 많은 옵션이 있습니다. 적절한 해결책을 결정하는 것은 예산, 프로그래밍 능력, 요구되는 커스터마이징 정도, 자산 클래스 가용성 및 거래가 소매 또는 전문적 근거로 수행되어야하는지 여부에 달려 있습니다.
양적 거래 시작하기?
QuantStart 목록을 구독해야하는 3 가지 이유 :
1. 퀀트 트레이딩 레슨.
계량 거래를 시작하는 데 도움이되는 힌트와 팁으로 가득한 무료 10 일간 코스에 즉시 액세스 할 수 있습니다!
2. 모든 최신 내용.
매주 나는 퀀트 스타트에서 모든 활동의 포장을 보내드릴 것입니다. 그래서 당신은 결코 다시 글을 놓치지 않을 것입니다.
현실감 넘치는 퀀 트레이딩 팁.
No comments:
Post a Comment